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Abstract

ISIS++ (Iterative Scalable Implicit Solver in C++) Version 1.1 is a portable, object-
oriented framework for solving sparse linear systems of equations. It includes a
collection of Krylov solution methods and preconditioners, as well as both uni-processor
(serid) and multi-processor (scalable) matrix and vector classes. Though it was
developed to solve systems of equations originating from large-scale, 3-D, finite element
analyses, it has applications in many other fields.

This document supercedes the ISIS++ v1.0 Reference Guide [4], defines the v1.1
interface specification, and includes the necessary instructions for building and running
ISIS++ v1.1 on Unix platforms. The interface is presented in annotated header format,
along with background on design and implementation considerations. A finite difference
modeling example problem isincluded to demonstrate the overall setup and use.
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1 Introduction

ISIS++ (Iterative Scalable Implicit Solver in C++) is a portable, object-oriented
framework for solving sparse linear systems of equations. It includes a collection of
Krylov subspace solution methods and preconditioners, as well as both uni-processor
(seria) and muilti-processor (scalable) matrix and vector classes (Figure 1). Though it
was developed to solve systems of equations originating from large-scale, 3-D, finite
element analyses, it has applications in many other fields.

ISIS++ is designed to provide simple interchangeability of components — both from
within the I1SIS++ system and from other packages. The ISIS++ framework facilitates
integrating components from various libraries, and in particular the matrix-vector
functional units and their corresponding data structures. The first practical test of this
concept was the integration of the Aztec [14] DMSR matrix-vector classes.

A primary goal of the ISIS++ project is to decompose the problem space into a set
of independent, object-oriented functional units, and in particular to decouple sparse
matrix data structures and their implementations from their use in Krylov solvers and
preconditioners. This can be viewed as developing archetypal interfaces between matrix,
vector, solver and preconditioner objects. In this manner, matrix-vector objects can be
implemented from various libraries while maintaining functional compatibility with the
solvers and preconditioners.

The advantages of the framework design include improving the ability to leverage
existing work. This facilitates usage of implementations and data structures tuned to a
particular application and computing platform. The source code for the solver and
preconditioner components is decoupled from the matrix-vector implementatitimss,

ISIS++ can be built using the matrix-vector implementation best suited to the task and
compute system at hand, with no changes to the solver or preconditioner source code.

For this concept to work in practice, the task of including library components must
be relatively straightforward and efficient. This design objective was addressed by a
policy of minimal but sufficient core components. That is, the abstract base classes define
the core set of interactions between solvers, preconditioners, matrix and vector objects,
regardless of their implementation. The purpose of keeping the core interface
requirements minimal is to simplify (i.e., not unduly restrict or complicate) adding new
implementations into the framework. To support parallel implementations, care has been
taken to avoid inclusion of any function not deemed scalable.

' For preconditioners which access the matrix values directly, completely generalized access can potentially
incur a large overhead cost (e.g., if a matrix is stored as CRS format and the preconditioner attempts to
access the values column-wise this is an extremely inefficient process). We use a hierarchical mechanism
to limit access to data structures so as to preclude these types of inefficiencies.
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Figure 1. 1SIS++ framework overview”.

It is essentia that the performance of the mathematical components incorporated
from other libraries be comparable to that of their “native” state. That is, the overall
performance of a combination of components within 1ISIS++ should be comparable to that
observed when those components are run in their original stand-alone state. Our
observation is that a penalty is incurred for providing fully generalized matrix access
functions for use in the preconditioners. Specifically, in cases where the preconditioner
needs an internal representation of the sparse matrix, there may be a memory and/or a
“copy” time overhead associated with the translation. However, specializations of the
matrix classes can be provided to give the preconditioner knowledge of the data
structures, allowing direct (fast) access to the underlying data with minimal overhead.

The remainder of this document is organized as follows. The ISIS++ framework
design and core base classes are discussed in section 2. The solver, preconditioner, and
matrix/vector class implementations are presented in sections 3, 4, and 5, respectively.
An example problem is described in section 6. The installation procedures are provided
In section 7, and the references are in section 8.

Further information and the most current updates can be found on the ISIS++ web
site athttp://z.ca.sandia.gov/isis/

% The color coding in the overview figure is as follows: blue represents the central abstractions in |SIS++,
dark blue represents the implementations, dark magenta (AMGe & PILUT) represents the implementations
il in progress at the time of this writing, and dark cyan (CGNE and CGNR solvers) are specializations
which interact with only a subset of the preconditioners. The SAILS, AMGe, and PILUT preconditioners
are LLNL/CASC (http://www.lInl.gov/CASC/) implementations.




2 Framework Overview

In this section we describe the I1SIS++ framework, which is founded on the base
classes Solver, Preconditioner, Matrix, Vector, and LinearEquations. These classes
constitute the fundamental abstractions within 1SIS++, and define the core interactions
provided by the framework. As will be shown, specializations of these abstractions are
provided in order to address the needs of certain methods (e.g., the SPAI preconditioner
uses dynamic row resizing features not provided in the Matrix base class).

After an overview of the ISIS++ framework, we describe the public interfaces for
the core and derived base classes. Additionally, we describe the public interfaces for the
Map and Comminfo auxiliary classes.

2.1 Central abstractions

The ISIS++ framework includes an integrated collection of C++ classes which are
designed for the scalable solution of large-scale, unstructured, sparse systems of linear of
equations on distributed memory parallel computers’.

At the core of the ISIS++ framework are the abstract base classes: Solver,
Preconditioner, Matrix, Vector, and LinearEquations. @ These base classes are
particularized to yield specialized base classes as follows:

Solver - lterativeSolver
Preconditioner — RowPreconditioner
Matrix — RowMatrix.

The hierarchical representation of this class structure is shown in Figure 2. The core base
classes interact with each other through the functions defined in their public interfaces,
and represent generadizations of the primary functional and data units within the
framework., These classes and their immediate descendants define the basic framework,
while the implementations of the classes provide the data structures and solution
methods.

The framework insulates the implementation details of one base class from another.
Implementations can be added or modified without requiring changes to associated (or
indirectly related) classes. For example, adding a new matrix class is simply a matter of
mapping the data and functionality of the matrix object into the Matrix (or derived
matrix) base class. The solvers and preconditioners are immediately (and without
modification to source code) able to use the new matrix class, since it behaves according
to the definition of the base class. It is asimple matter to switch matrix and vector class
implementations to run on uni-processor or multi-processor computers. Thus, paralel
matrix implementations can be selected according to those best tuned for the platform.

® Uni-processor implementations are also supported.
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Figure 2. 1SIS++ central abstractions.

2.2 Solver base classes

The Solver abstract base class' is essentialy a placeholder for the function sol ve.
The Solver class is the root for the IterativeSolver abstract base class. The Krylov
methods implemented in I1SIS++ are al derived from the IterativeSolver base class. The
solver base classes share one important feature — they use generic representations of
matrices and vectors (i.e., they have as arguments the classes Matrix and Vector).
Consequently, solver implementations (such as the Krylov solvers derived from the
IterativeSolver class) may interact with any matrix and vector objects so long as they do
not introduce specialized requirements from the Matrix or Vector base classes.

In effect, the solver base classes are only relevant from the developer’s point of
view, since the user interacts with particularizations of the solver classes. Indeed, the
solve function itself is accessed via the LinearEquations class (see below). The annotated
public interfaces for the Solver and lIterativeSolver base classes follow. The functions
represented therein are inherited by (and hence are available from) all of the Krylov
subspace iterative methods presented in section 3.

Solver class public interface

cl ass Sol ver

/1 default constructor function
Solver () {};

/1 default destructor function
virtual ~Solver() {};

/1 solve function
virtual int solve(const Matrix& A, Vector& x, const Vector& b,
Preconditioner& pc) = 0;

“ A C++ class containing one or more pure virtual functions is by definition an abstract base class. Pure
virtual functions must be implemented by derived classes, hence the notion of an abstract base class. It is
not possible to instantiate an abstract base class object. Rather, derived objects must be instantiated. Ellis
and Stroustrup [6].
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/1 to pass in paraneters
virtual void paraneters(int nunParans, char **paranStrings) = 0;

/1l to set anpbunt of screen out put
virtual void outputlLevel (int level, int |ocal Rank, int nmasterRank);

Solver base class public interface reference notes:

* Thereturn valuesfor al sol ve functions are currently interpreted as follows:
1  successful completion, normal convergence tolerance met.
0  unsuccessful completion, failed to convergein maxl t erati ons() .
-1 unsuccessful exit on stall condition.
-2  failed on memory allocation.

* Thepar anet er s function isto be implemented by each solver implementation. The
format of the arguments is the same as that used to access command line argumentsin
general, and allows any number of any type of argument to be passed in. A simple
example of thisis given in the Example Problem section at the end of this document.

* Theout put Level function determinesthe amount of screen output that will be
produced. The “level” parameter has the following effect:
0 no screen output
1  master node prints out parameter values and residual norms
2  all nodes print out information. Intended for debugging purposes.

ThelocalRank andmaster Rank arguments are logical processor numbers for the
parallel case; they can both take the value 0 for the serial case.

IterativeSolver class public interface

class IterativeSolver : public Solver

/] default constructor function

IterativeSol ver ()
tolerance_(1.0e-13), // default convergence tol erance
maxl|terations_(2000), // default max iterations
maxStal | Count _(0) {}; // disable stall check

/]l default destructor function
virtual ~lterativeSolver(){};

/1 solve function
virtual int solve(const Matrix& A Vector& x, const Vector& b,
Preconditi oner& pc) = 0;

/'l get/set convergence tol erance
doubl e tol erance();
voi d tol erance(doubl e tol)
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/1 get/set maxi mum nurmber of iterations
int maxlterations();
void maxlterations(int naxlt);

/1 get/set scal ed residual 2-norm
doubl e normal i zedResi dual () ;
voi d nornal i zedResi dual (doubl e residual);

/1 get/set stall count
int maxStall Count();
voi d maxStal | Count (i nt nmaxSC);

IterativeSolver base class public interface reference notes:
* Thereturn valuesfor the sol ve function are similar to the Solver base class.

e Current implementations of the nor mal i zedResi dual function use the 2-norm of
the RHS vector b to scale the residua vector.

* The maxStal | Count functions are used to control the stall checking algorithm
within the Krylov solvers. The stall checking algorithm looks for progress toward
convergence within maxSC iterations, and will terminate the iterations if a stall
condition is observed. Setting maxSt al | Count (0) disables the stall checking
algorithm. By default, the stall checking is disabled.

2.3 Preconditioner base classes

The Preconditioner abstract base class provides the fundamental interactions
required by Krylov subspace iterative solvers, fashioned after the development presented
in Barrett, et al. [2]. The basic interaction between solvers and preconditionersin |SIS++
Is discussed below. It is worth noting the mathematical model assumed within ISIS++
before describing the Preconditioner and RowPreconditioner base classes.

The basic mathematical problem can be defined as follows. Given the linear system
of equations:

Ax=b: AOO™, x bOO", (2.1)

where sparse matrix A and RHS vector b are known’, we seek to determine the solution
vector X within a predetermined accuracy. Consider a matrix M which approximates A in
some sense. If M™ is relatively cheap to compute and if M A= (or is otherwise
significantly better conditioned than A), then M can be considered an effective
preconditioner. Assume a splitting of the approximation matrix such that:

MM,=M=A: M,M,,MOO™". (2.2
Applying thisto (2.1) gives

® Solution strategies can also use an initial guess of the solution vector .
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M*AM;*M,x =M% : ADO™", x, bOO", (2.3)
which can be viewed as
By=c: B=M"AM,', y=M,x, c=M;"b. (2.4)

Typicaly, either M, =1or M, =1, for right or left (one-sided) preconditioning,
respectively. However, the basic model (and interface) supports two-sided
preconditioning. The solvers form B, y, and c implicitly by applying the preconditioners
through computational steps such as:

solvefor z from M,z=d,

which is avail able from the preconditioner interface as member function sol veMi(z, d).
There are corresponding functionsfor M, M, , and M, , as shown below.

The RowPreconditioner base class provides specidizations for implementations
which require row-wise access to matrix values. As shown below, the Preconditioner and
RowPreconditioner public interfaces are nearly identical, with only minor modifications
in the constructor function to account for the use of RowMatrix objects. The primary
difference in the interfaces is the requirement that a RowMatrix object be referenced.
This restriction permits preconditioner implementations to access the row data within the
reference matrix (passed in the constructor). By inheritance, all of the public functions
from the Preconditioner class are available. The pure virtual functions shown for the
RowPreconditioner class are essentially “passed down” from the Preconditioner class to
derived implementations.

Preconditioner class public interface

class Preconditioner

/] default constructor function

Precondi ti oner(const Matrix& A) : matrix_(A) {outputlLevel _ = 0;};
/1 default destructor function

virtual ~Preconditioner() {};

/'l solver access functions

virtual void solveML(Vector& y, const Vector& z) const = 0;
virtual void solveMLT(Vector& y, const Vector& z) const = O;
virtual void solveM2(Vector& y, const Vector& z) const = 0;
virtual void solveM2T(Vector& y, const Vector& z) const = O;

/1 calculate preconditioner
virtual void calculate() = 0;

/1 to pass in paraneters
virtual void paraneters(int nunParans, char **paranttrings) = O;

/1 clear menory
virtual void enpty() = 0;
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/Il left and right nodifiers and query functions
virtual void setDefault() = 0;

voi d setLeft();

voi d setRight();

bool isLeft() const;

bool isRight() const;

Preconditioner base class public interface reference notes:

* Given apreconditioning matrix M = A, matrices M;M, = M, and vectorsy and z,
the solver access functions correspond to the following operations:
sol veML(y, 2) Uy= Ml'lz
solveMiT(y, z) 0O y=M;"z (where M, " istheinverse of M, transpose)
sol veM2(y, 2) Uy= Mz'lz
solveMeT(y,z) 0O y=M,"z (where M," istheinverseof M, transpose).

* Thecal cul at e function does any up-front computations for the preconditioner, and
in general needs to be issued prior to invoking preconditioner services from within the
solvers. For multi-step problems, the preconditioner results can be sub-cycled by
calling thecal cul at e function less frequently than the
Li near Equat i ons: : sol ve function.

* Thepar anet er s function has the same functionality as the one in the Solver base
class.

* Theenpty function is designed to release memory (after the preconditioner has been
used) without deleting the preconditioner object. It is completely specific to the
particular preconditioner implementation.

* Theleft and right modification and query functions allow the user to control the
operation of the preconditioner in those cases where it may be applied from either the
left or right. Generally, there is a preferred means of applying the preconditioner, and
thisis set by the set Def aul t function. By convention, theset Def aul t functionis
issued from within the constructor function®.

RowPreconditioner class public interface

cl ass RowPreconditioner : public Preconditioner

/1 default constructor function

RowPr econdi ti oner (const RowMatri x& A) : Preconditioner(A), matrix_(A) {};
/1 default destructor function

virtual ~RowPreconditioner() {};

® Strictly speaking, the interface does not guarantee the user that the set Def aul t function will be issued
upon construction.
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/'l solver access functions

virtual void solveML(Vector& y, const Vector& z) const = 0;
virtual void solveMLT(Vector& y, const Vector& z) const = O;
virtual void solveM2(Vector& y, const Vector& z) const = 0;
virtual void solveM2T(Vector& y, const Vector& z) const = O;

/1 cal cul ate preconditioner
virtual void calculate() = 0;

/1 to pass in paraneters
virtual void paraneters(int nunParans, char **paranttrings) = O;

/1 clear sone menory
virtual void enpty() = 0;

/1 left and right nodifiers
virtual void setDefault() = 0;

RowPreconditioner base class public interface reference notes:

» The RowPreconditioner class behaves precisely like the Preconditioner class, but adds
the restriction that construction requires a RowMatrix object. This specialization
permits the added (data access) functionality of RowMatrix objects to be employed by
RowPreconditioner derived objects.

» The complete set of left and right modification and query functions are inheritted.
Theset Def aul t function is “passed through” as a pure virtual function to derived
classes.

2.4 Auxiliary container classes

The Map and Comminfo classes are basic building blocks for sparse linear systems
in ISIS++ on distributed-memory computing systems. These two classes contain
information pertaining to the decomposition of the problem data. In a distributed-
memory setting, these objects hold the partitioning and basic communications
information. In the uni-processor setting (see section 5), the matrix/vector objects default
to the trivial case and are constructed without need of partitioning information.

TheMap base class is the primary container for partitioning information. Map class
derived objects contain Comminfo objects. Consequently, Comminfo services can be
reached via the Map class. The Map class contains a virtual representation of the
nxmr-matrix and vector partitioning information. Specifically, any matrix/vector can be
thought of as corresponding to a linear partitioning of rows and columns across
processors. Thus, there is the notion of a global matrix/vector addressing within the Map
base class. Further, certain restrictions apply to this global addressing scheme, including:

* Rows and columns are globally numbered fromi and 1 tam, respectively.
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* Theterms startRow, endRow, and numLocal Rows retain the relationship
numLocal Rows = endRow - startRow + 1
for al processors. The same relationship holds for the column equivalents.

Since this generalization is not suitable for all possible matrix/vector implementations

(i.e., more complex data distributions may be desirable or necessary), the Map class is

meant to be expanded as needed for each new matrix/vector class implementation. That

is, a derivative Map class may be added for each new parallel matrix/vector
implementation, depending on how the partitioning information is stored native to the

new implementation. The public interface shown below contains the constructors for the
ISIS++ “native” matrix/vector class implementations. The Map class specialization
developed for the Aztec DMSR matrix/vector implementation is presented in section
5.10.

The Comminfo class contains information pertaining to processor IDs and the
number of processors being used. This object exists trivially for the uni-processor case.
For the parallel case, it is a repository of the communication subsystem information and
is constructed by the end-user. Comminfo objects are referenced via Map objects which
effectively own the information.

Map class public interface

cl ass Map

/1 default distributed-nmenory constructor function

Map(int n, int startRow, int endRow, int startCol, int endCol, const Conm nfo&
conmi nfo);

/'l non-square distributed-menory constructor function

Map(int n, int m int startRow, int endRow, int startCol, int endCol, const
Conml nf 0& commi nf 0) ;

/1 default serial constructor function

Map(int n);

/'l copy constructor

Map(const Map& map);

/] default destructor

virtual ~Map() {};

/| access functions

const Comml nf o& get Conm nfo() const; /1 get Comm nfo ref

int n() const; /1 get global row count

voi d initConplete(); /1 mark object as fully constructed
bool islnitConplete() /[l TRUE if object is fully constructed
int startRowm) const; /1 get local start row

void startRow(i nt start Row); /1 set local start row

int endRow() const; /1 get local end row

voi d endRow i nt endRow) ; /1 set local end row

i nt nuniocal Rows() const; /1 get local nunber of rows

int startCol () const; /'l get local start colum

void startCol (int startCol); Il set local start colum



16

int endCol () const; /'l get local end colum

voi d endCol (i nt endCol); /'l set local end colum

int nuniocal Col s() const; /'l get local number of cols

i nt nunG@ obal Rows(); /'l get global row count, n

voi d nunmd obal Rows(i nt nunGR); /'l set global row count, n

i nt nund@ obal Col s(); /1 get global colum count, m

voi d numd obal Col s(int numGC); /1 set global colum count, m

int* global Start Row); /1 get processor rank indexed array of
int* gl obal EndRow() ; /1 starting or ending row indices

int* global Start Col (); /1 get processor rank indexed array of
i nt* gl obal EndCol () ; /1 starting or ending columm indices

Map class public interface reference notes:
» Thefunction n() is deprecated in favor of function numGlobal Rows().

* Thedefault distributed memory constructor requires the user to provide the total
number of equations n, the processor-local values for the partitioning parameters, and
areferenceto alocal Comminfo object. The distributed-memory constructor
arguments are defined as follows:

n global number of rows/cols (matrix must be square)
startRow global index of lowest number row on local processor
endRow global index of highest number row on local processor
startCol global index of lowest number column on local processor
endRow global index of highest number column on local processor.

* The non-square distributed memory constructor is as the distributed memory
constructor except that the user must provide the total number of variables, m, also.

* The default serial constructor requires the user to provide the total number of
equations n. The values of startRow and startCol are set equal to 1 and endRow and
endCol to n upon construction. At present there is no non-square serial constructor.

» The copy constructor is used to create a duplicate Map object, which may then be
independently modified.

* The array returned by gl obal St art Row contains the index of the starting row for
each processor. For k processors, rank 1to k, gl obal St art Row() [i - 1] isthe index
of the first row stored on the ith processor. Similarly for gl obal EndRow,
gl obal St art Col , and gl obal EndCol .

« Both the Matrix and Vector base classes contain the function get Map which can be
used to retrieve areference to a Map object.

* The get Comml nf o function returns a reference to the Comminfo object associated
with the Map object. Asan example, consider the following code snippet:

Map map(n); /1 construct a sinple serial nmap
SCRS _Matrix A(map); /1 construct a serial CRS matrix
int rowount = A getMap().n(); /] matrix size, since square matrix

/1 determ ne | ocal processor rank
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int myRank = A getMap().get Conm nfo() .| ocal Rank();

Commainfo class public interface

class Conml nfo

/1 distributed-nenory constructor function
Comm nf o(i nt nunmProcessors, int masterRank, int |ocal Rank);

/]l serial constructor function
Conmi nfo();

/] default destructor function
virtual ~Conm nfo() {};

/'l access functions

i nt masterRank() const;
int | ocal Rank() const;

i nt nunProcessors() const;

Comminfo class public interface reference notes:

» For the distributed-memory case, the processor ID master Rank is used primarily for
output control. Native |SIS++ implementations use node master Rank as the primary
synchronization point for some global operations.

* Theseria constructor sets master Rank and local Rank to zero, and numProcessors to
one. Whilethisisatrivia result, it permits the access functions to work
interchangeably on serial and parallel platforms.

» Communications information may be retrieved via the function
Map: : get Comm nf o, which returns areference to a Comminfo object.

For example,
int n = 10; /1 10 rows & cols
Map nap(n); /1 construct serial map object

/1 query master processor rank
int masterRank = map. get Comm nf o() . mast er Rank() ;

2.5 Matrix base classes

The Matrix abstract base class represents the primary data structure within 1SIS++,
since matrix operations and storage typically dominate CPU and memory requirements,
respectively. The Matrix class was designed to be as simple and general as possible,
while providing the operations needed to support Krylov iterative solvers.
Specializations of the matrix classesin large part revolve around the storage format of the
data, and consequently the data access interface possibilities. Krylov solvers in genera
do not need to access the matrix data, but rather the mathematical operations of matrices
on vectors. In this sense, the matrix data abstraction works ideally for solver/matrix
Interactions.
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However, the same does not hold for preconditioner/matrix interactions. That is,
some preconditioners need to access matrix values, and in some cases (e.g., SPAI)
construct matrix objects internally. In these cases, a generalized data access interface
(and underlying implementation) is desirable to keep the abstraction “intact”.
Unfortunately, this degree of generality appears to be impractical for high-performance
implementations due to the overhead involved when the data does not naturally conform
to the fully generalized access requirements. For example, consider the case whereby a
sparse matrix object is stored in CRS (Compressed Row Storage) format (see Barrett et
al.[2]), and a column of the matrix is needed. One does not even need to consider the
complicating factor of partitioning the matrix across processors according to rows to
realize that fetching a column of a CRS matrix is an extremely inefficient operation.
Consequently, specializations of the Matrix class are needed to provide for efficient
access to the internal data. As shown below, except for the ability to access the matrix
diagonal, there are no provisions for data access in the Matrix base class. The data access
specializations arise in the derived matrix classes.

The RowMatrix base class is derived from (and inherits the public interface of) the
Matrix base class, and requires further specialization before objects can be constructed.
The added access functions distinguish the RowMatrix class from the Matrix class. The
common (pure virtual) functions are essentially passed through to classes which are
derived from the RowMatrix class. A specialized set of direct pointer access functions is
available for implementations which can support it. In particular, each row’s data must
be contiguous in memory for pointer access to be viable. This is currently provided for
four ISIS++ matrix implementations, all derived from the RowMatrix class. A test
function is provided for run-time determination of the viable existence of the pointer
access functions.

We now present the public interfaces for the Matrix and RowMatrix base classes.

Matrix class public interface

class Matrix

/1 constructor function

Matri x(const Map& nap);

/1 default destructor function
virtual ~matrix() {};

/1 mathematical functions
virtual void vectorMiltiply(Vector& y, const Vector& x) const = 0;
virtual void transposeVectorMiltiply(Vector& y, const Vector& x) const = 0;

/1 data access functions

virtual void getDi agonal (Vector& di agVector) const = 0;
const Map& get Map() const;

virtual void put(double s);

/1 special functions
virtual void configure(const IntVector& rowCount) = 0;
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virtual void fill Conplete() = O;
virtual bool readFronFile(char *fil ename) = O;
virtual bool witeToFile(char *filenanme) const = 0;

/'l query functions

bool isFilled() const;
bool isConfigured() const;

/1 mn/max functions

virtual bool rowMvax() const {return false;};
virtual bool rowM n() const {return false;};

virtual double rowMax(int rowNunber) const (return -
virtual double rowM n(int rowNunber) const (return -

1.0;);
1.0;);

Matrix base class public interface reference notes:

Upon construction the matrix object does not allocate the memory space for the data.
Rather, the conf i gur e function passes the vector rowCount which contains the
number of non-zeros per row. At that point the memory for the matrix values and
indices can be allocated. Thisis not needed or even supported by all implementations,
aswill be seen later.

The use of the matrix-vector multiply functions areillustrated in the following code
snippet.

DCRS _Matri x A(nmap); /1 construct DCRS matrix A

Di st _Vector y(nmap); /1 construct distributed vector y

Di st _Vector z(nmap); /'l construct distributed vector z
(initialize A and z)

A vectorMil tipy(y, z); 11 y=Az

A. transposeVectorMil tiply(y,z); [/ Y=AZ

The get Di agonal function loads the reference vector with the matrix diagonal
terms.

The get Map function returns a reference to the associated Map object, and is the
access point for Map and (indirectly) Comminfo information.

Theconfi gure function allocates memory for the storage of al necessary terms to
contain matrix data. Calling this function resets the internal state such that (for a
given matrix) subsequent callstoi sConf i gured will return true. It is not necessary
to usethe conf i gur e function for all matrix implementations.

Thefi || Conpl et e function provides a placeholder for handling the data
consistency checks as well as message-passing configuration information for the
distributed-memory case. This function must be invoked once all the user datais
loaded into the matrix object, and before computations are performed with it.

The put function assigns the value given to al the non-zero elements of an already
configured matrix.
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Ther eadFronFi |l e andwr i t eToFi | e functions read/write to a user-named ASCI|
filein the Matrix Market exchange format. Asyet, not al |SIS matrix
implementations are fully MatrixMarket conformant, as documented in thefile
doc/file-format.txt in the 1SI S++ source distribution.

Thei sFi | | ed function is used to verify that the matrix object has been loaded with
data before attempting to mathematically operate on the matrix. When a matrix
object is constructed, or subsequent to calling the enpt y function, the matrix state is
internally set to not-filled. Only after calling fi | | Conpl et e isthe state reset to
return true.

Thei sConf i gur ed function is used to query whether the matrix object has been
configured (i.e., the memory has been allocated).

The boolean r owivax and r owM n (query) functions indicate whether avalid
implementation of the associated functions exist for a particular matrix
implementation.

New matrix implementations require development of the conf i gur e and
fill Conpl et e functions, and potentialy a new variant of the Map class.

RowMatrix class public interface

class RowMvatrix : public Matrix

Il

constructor function

RowMat ri x(const Map& map) : Matrix(nmap) {};

Il

default destructor function

virtual ~Rowwatrix() {};

Il

mat hemat i cal functions

virtual void vectorMiltiply(Vector& y, const Vector& x) const = 0;
virtual void transposeVectorMiltiply(Vector& y, const Vector& x) const = 0;

Il

speci al functions

virtual void configure(const IntVector& rowCount) = 0;
virtual void fill Conplete() = O;

11

virtual void getDi agonal (Vector& di agVector) const

data access functions ...

I
e

virtual void get RowSum Vector & rowSunVector) const = O;
virtual int rowLength(int row) const = O;

11

to resize matrix rows (where applicable)

virtual bool setRowiLength(int Iength, int rowNunber) {return false;};

11

to read matrix rows.

virtual void getRow(int row, int& |ength, double* coefs, int* collnd) const = 0;
virtual void getRow(int row, int& |ength, double* coefs) const = O;
virtual void getRow(int row, int& length, int* collnd) const = O;
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/1l ... to wite matrix rows.

virtual int putRow(int row, int cardinality, double* coefs, int* collnd) =0
virtual int sumntoRow(int row, int cardinality, double* coefs, int* collnd) =
0;

/1 specialized direct pointer access functions ...

I/l ... test for pointer access viability
virtual bool pointerAccess() {return false;};
/1l ... read-wite pointer access to matrix data

virtual doubl e* getPointerToCoef(int& | ength, int rowNunber) = 0;

virtual int* getPointerToCol | ndex(int& length, int rowNunber) = O;

/1 ... read-only pointer access to matrix data

virtual const doubl e* get Poi nterToCoef (int& [ ength, int rowNunber) const=0;
virtual const int* getPointerToCollndex(int& |length, int rowNunber) const=0;

RowM atrix base class public interface reference notes:

* Unless otherwise indicated, the RowM atrix functions are identical to the Matrix class
equivalents.

* Theget RowSumfunction returns (via the argument list) a vector whose elements are
the sum of the absolute values of the entries of the corresponding rows.

* Ther owLengt h function returns the number of (presumably non-zero) entriesin the
specified row.

* Theset RowLengt h function is provided for all RowMatrix class implementations,
but is only functional for those implementations which support dynamically resizing
rows. For the statically sized implementations, the function will return false. For the
dynamically sized implementations, the function will return true.

» Threevariations of the get Row function are provided for reading matrix row data,
each guaranteed not to modify the matrix data. Depending on the argument list, data
isloaded into the buffers for the matrix coefficients and/or column indices, and the
length of the row is returned as an argument.

+ Thepoi nt er Access function’ provides a boolean test for the availability of the
direct pointer access functions, which only apply to implementations with rows stored
In contiguous memory.

For implementations which do not support pointer access, the poi nt er Access
function returns false and the get Poi nt er ToCoef and get Poi nt er ToCol | ndex
functions return pointer to NULL (i.e., zero value) and argument length = -1.

" This approach was chosen over more elegant solutions, as it proved completely portable on all C++
compilers. Dynamic casting would probably be preferable, but the compiler support was marginal at the
time of this development.
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For implementations which do support pointer access, the functions

get Poi nt er ToCoef and get Poi nt er ToCol | ndex provide the meansto directly
access the matrix coefficients and column indices, respectively. Theconst versions
of these functions provide read-only access to the data. The value of the return
argument length is the number of entriesin the specified row.

2.6 Vector base classes

There are two fundamental vectors abstractions represented in 1SIS++ v1.1: real-
valued (double-precision) and integer-value (int) vectors. A further delineation can be
made regarding uni- or multi-processor implementations, but this is abstracted from the
fundamental representation. The current implementations available in 1SIS++ are
discussed in section 5.

The Vector class represents the real-valued vector abstraction and, like the Matrix
class, is designed to provide the operations necessary to support Krylov subspace iterative
methods. Since data access is so much simpler for vectors than matrices, efficient,
generalized data access can be provided.

The IntVector class represents the integer-valued vector abstraction, and is similar
to the Vector class but with amore limited set of mathematical functions. Its primary use
within the ISIS++ native implementations is as a container class for indices and
cardinaities.

Vector base class public interface

cl ass Vector

/1 default constructor function
Vect or (const Map& map) ;

/1 default destructor function
virtual ~Vector() {};

/'l cloning constructor function
virtual Vector* newMector() const = O;

/1 mathematical functions

virtual void addVec(double s, const Vector& y) = 0;

virtual doubl e dotProd(const Vector& y) const = O;

virtual void |linConb(const Vector& y, double s, const Vector& z) = 0;
virtual double norn{) const = O;

virtual void put(double s) = 0;

virtual void scal e(double s) = 0;

virtual void randon(int seed=1) = O;

virtual double nornl() const = 0;

/1 assignment operator
Vect or & operat or=(const Vector& rhs);
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/'l access functions

virtual doubl e& operator[](int index) = O;

virtual const doubl e& operator[](int index) const = O;
const Map& get Map() const;

V ector base class reference notes:

The newvect or functionis critical to the use of vector objects internally in other
objects (e.g., solvers and preconditioners). When objects use vectors asinternal auto-
variables, the cloning facility permits the object to construct vectors from the passed-
in prototype so that they are of similar type (and partitioning) as the prototype. This
capability alows the abstracted vector types to be used essentially anywherein a
consistent manner.

The mathematical functions correspond to the following operations, where x is the
reference vector, y and z are vectors, and sis a scalar:

x. addVec(s,y); X, « X +sy, Ui
x. dot Prod(y); return Y o XV,

x. linComb(y,s, z); X =y +sz Ui
x. nornm(); return (3 Xiz)ll2
x. normi(); return max(| ¥, )
X. put (s); X =S i
x. scal e(s); X =S Oi
x. random( seed) ; X; D[O,l] Oi

The oper at or = function sets the LHS vector equal to the RHS vector, such as:

X = y; X =Y, Oi.

Theoper at or [] functions provide read-only and read/write access to individual
vector elements. In general, these functions are slower than direct (pointer-based)
data access.

The get Map function returnsaconst reference to the map object used to construct
the vector object.

Ther andomfunction implemented in ISIS++ isrelatively simple. It is drawn from
Carl Pearson’s 1986 book "Numerical Methods in Engineering and Science' .

IntVector base class public interface

class I ntVector

/1 default constructor function
I nt Vect or (const Map& nap) ;

/]l default destructor function
virtual ~IntVector() {};
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/'l cloning constructor function
virtual IntVector* newl ntVector() const = 0;

/!l mathematical functions
virtual void put(int scalar) = 0;

/1 operator= function
I nt Vect or & operator=(const |ntVector& rhs);

/] access functions

virtual int& operator[](int index) = 0;

virtual const int& operator[](int index) const = 0;
const Map& get Map() const;

IntV ector base class reference notes:
* ThenewVect or functionissimilar in principle to that of the Vector class.

» The sole mathematical function is used for setting all vector elementsto ascalar
value. This corresponds to the following operation, where x is a reference integer-
valued vector and sis an integer-valued scalar:

X. put (s); X =S i

* Theoper at or = function sets the LHS vector equal to the RHS vector, such as:
X =vy; X =Y, Oi.

* Theoperator[] functions provide read-only and read/write access to individual
vector elements. In general, these functions are slower than direct (pointer-based)
data access.

* Theget Map function returnsaconst reference to the map object used to construct
the vector object.

2.7 LinearEquations class

The Linear Equations class binds the matrix, the solution vector, and RHS vector to
form a system of linear equations (denoted Ax=Db). The LinearEquations object
provides a point of interaction to initiate and control the solution process, including
setting the solver, preconditioner, and scaling functions.  Another role of the
LinearEquations class is to check for consistency with the associated matrix and vector
objects. That is, the matrix and vector types can be compared, and the partitioning can be
checked viathe Map object (used to construct the matrix and vectors).

We now present the public interface for the LinearEquations class. It is worth
noting that unlike the Solver, Preconditioner, Matrix, and Vector base classes
LinearEquations objects may be directly constructed (i.e., without derivative
implementations).
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LinearEquations class

cl ass Linear Equati ons

/'l constructor function
Li near Equati ons(Matri x& A, Vector& x, Vector& b);

/] default destructor function
virtual ~LinearEquations() {};

/1 set preconditioner and solver functions
voi d set Preconditioner(Preconditioner& pc);
voi d set Sol ver (Sol ver & sol ver);

/'l invoke sol ution process
voi d sol ve();

/'l scaling functions
bool rowScal e();
bool col Scal e();

LinearEquations class reference notes:

 Theset Preconditioner andset Sol ver functions set internal pointersto
Preconditioner and Solver objects, respectively. The pointers are subsequently used
inthesol ve function.

* TherowScal e and col Scal e functionsinvoke row and column scaling on the
reference system Ax = b. These operate through related matrix and vector scaling
services, and return false when scaling is not supported or otherwise true. All
rows/columns are scaled according to the maximum absolute value over the
corresponding row or column. Hence, the maximum value in arow/columnis 1
immediately following row/column scaling.

3 Solver Implementations

The solvers currently implemented in ISIS++ are al Krylov subspace iterative

methods. For mathematical background on Krylov methods for linear systems, we refer
the reader to Barrett et a. [2], Freund, Golub and Nachtigal [10], Meier-Yang [16] and
Tong [21], to name just a few of the many works that exist in this field. In this section
we briefly describe the solversincluded in the |SIS++ v1.1 framework.

All solver implementations are derived from the IterativeSolver base class, and
inherit its public interface (see section 2.2). Consequently, the primary interaction with

these solvers is defined by the IterativeSolver public interface. Here we present the

functions particular to each of the methods. We have omitted the pure virtual function

sol ve, which is common to all the solvers and is identical to that of the lterativeSolver

class.
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In some of the algorithm descriptions that follow, we refer to the initial residual,
and the Krylov subspace corresponding to the initial residual. The initial residual is
denoted by r@ =b- Ax?, where A OO™" isthe coefficient matrix, b 00" is the right-
hand-side vector, and x'® 00" is the initial guess of the solution vector supplied by the
user. The Krylov subspace of dimension m corresponding to the initial residual is defined

as K, (Ar®)=span{r©@, Ar@ A7 @  A™ O},

3.1 QMR

The QMR (Quasi-Minima Residual) algorithm, introduced by Freund and
Nachtigal [11], is based on the non-symmetric Lanczos process. It consists of
constructing a bi-orthogonal pair of vector sequences, which are the Krylov subspace
vectors for the matrix A and for the transpose of A. Several variants of QMR have been
developed which add look-ahead techniques to avoid numerical break downs, and which
use two- or three-term recursions to construct the vector iterates. Transpose-free variants
have also been developed (see Freund [9]), in order to avoid the need to calculate a
transpose matrix-vector product since some sparse matrix implementations don't provide
that capability. The implementations currently in ISIS++, however, use the transpose
product, and employ coupled two-term recurrences without look ahead.

The QMR algorithm may be applied to general linear systems; it requires neither
symmetry nor positive-definiteness of the coefficient matrix. The major computational
components of this algorithm are the two matrix-vector products (one of them a
transpose), some vector updates and two vector dot products per iteration. In terms of
memory requirements, it uses about 15 internal vectors in addition to the matrix and two
vectors that are passed in from the calling program. No special control parameters are
used for the QMR algorithm. Hence the constructor and destructor functions are all that
are required from the user’s point of view.

At present, there are two variants of QMR implemented in ISIS++. The
QMR_Solver class is based on Freund and Nachtigal [11]. The QMR2_Solver is a
variant by Buecker and Sauren [3] which reduces the number of global synchronization
points to improve scalability. Our experience indicates that QMR is slightly more
numerically stable than QMR2. We are investigating the addition of look-ahead
mechanisms.

QMR_Solver class public interface

class QVR Solver : public IterativeSolver

/1 constructor function
QVR_Sol ver ();

/1 destructor function
virtual ~QWR _Sol ver() {};

QMR2_Solver class public interface
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class QVR2_Solver : public IterativeSol ver

/'l constructor function
QVR2_Sol ver ();

/1 destructor function
virtual ~QVR2_Sol ver() {};

3.2 GMRES(m)

The Generalized Minimum Residua (GMRES) algorithm was introduced by Saad
and Schultz [19]. It is based on the Arnoldi algorithm for reducing a general matrix to
upper Hessenberg form. Basically, the Hessenberg matrix is a restriction of the
coefficient matrix A onto the Krylov subspace corresponding to the initial residual. The
approximate solution is obtained by minimizing the residual on the Krylov subspace and
then projecting it back onto the space corresponding to A using the basis vectors that were
produced by the Arnoldi process. This requiresthat all basis vectors be stored, so that the
memory requirements increase linearly with the iteration count. The computational cost
per iteration also increases linearly, since each new basis vector must be orthogonalized
against all previous ones. In order to avoid prohibitive memory and computational costs,
the algorithm is restarted periodically, at which point the dimension of the Krylov
subspace is reset to 1 and the approximate solution is used for the initial guess in the next
cycle. The optimal number of iterations to perform between restarts is problem-
dependent, and it represents a compromise between memory and computational costs,
and rate of convergence. In general, a smaller restart value causes poorer convergence
behavior, and can in fact lead to a stall situation in some cases.

GMRES(m) can be applied to general linear systems, requiring neither symmetry
nor positive definiteness. The restart value (m) is the only special control parameter used
for the GMRES(m) algorithm. Functions are provided to query and set the restart value,
which is by default set to 100 upon construction.

GMRES_Solver class public interface

cl ass GVRES Sol ver : public lterativeSol ver

/'l constructor function
GVRES_Sol ver(int nm;

/1 destructor function
virtual ~GVRES_Sol ver () {};

Il restart interval
int m() const; /'l get restart interval
void miint m; /] set restart interval

3.3 FGMRES(m)

The FGMRES algorithm is a Krylov subspace method which is described in detall
in Y. Saad [18]. It is a right-preconditioned version of GMRES, which alows the
preconditioner to vary at each iteration. For example, other iterative solvers can be used
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as preconditioners. At this time, preconditioners are being constructed for ISIS++ that
will exploit this capability.

FGMRES_Solver class public interface

class FGVRES Sol ver : public IterativeSol ver

/1 constructor function
FGVRES_Sol ver (int m;

/] destructor function
virtual ~FGVRES_Sol ver () {};

/1 restart interval
int m) const; /1l get restart interval
void n(int m; /1 set restart interval

3.4 DefGMRES(m)

DefGMRES(m) (Deflated GMRES(m)) is a modification of GMRES(m), based on
an agorithm introduced by Erhel et a. [8]. When GMRES is restarted, the Krylov
subspace that has been constructed is discarded. Contained in the Krylov subspace, is
information about the extremal eigenvalues and eigenvectors of the coefficient matrix A,
which are important to the convergence of the algorithm. Discarding this information is
the reason why restarting harms the convergence of GMRES. The idea of Erhel et al. is
to save some of this eigenvalue and eigenvector information (through deflation) and then
apply it as a preconditioner after the restart, thus enhancing the convergence of the
restarted algorithm. The implementation used in ISIS++ is a variant of the above idea,
whereby the information saved by deflation is applied in addition to any arbitrarily
chosen preconditioner passed in by the user. Our experience indicates that
DefGMRES(m) can provide significant performance gains for many problems’,

DefGMRES(m) has the same applicability as ordinary GMRES(m), requiring
neither symmetry nor positive definiteness. However, the benefits provided by the
deflation strategy will vary from case to case. The restart value (m) is the only special
control parameter used for the deflated GMRES(m) algorithm. Functions are provided to
guery and set the restart value, which is by default set to 100 upon construction.

DefGMRES_Solver class public interface

cl ass Def GVRES _Sol ver : public IterativeSol ver

/'l constructor function
Def GVRES Sol ver (int m;
/1 destructor function
virtual ~Def GVRES_Sol ver() {};

® Considering both qualitative convergence and wall-clock time.
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/1l restart interval

int m) const; /1 get restart interval
void nmiint m; /1 set restart interval
3.5 BiCGStab

The Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm is another Lanczos-
based algorithm, which is closely related to the Conjugate Gradient (CG) algorithm. It
produces two mutually orthogonal vector sequences. For more detail regarding this
algorithm see Barrett et a. [2].

BiCGStab may be applied to general linear systems, and has a computational cost of
two matrix-vector products and four inner products per iteration. No special control
parameters are used for the BiCGStab algorithm. Hence the constructor and destructor
functions are all that are required from the user’s point of view.

BiCGStab_Solver class public interface

class Bi CGStab_Sol ver : public IterativeSol ver

/'l constructor function

Bi CGSt ab_Sol ver () ;

/] destructor function

virtual ~Bi CGStab_Solver() {};

3.6 CGS

The Conjugate Gradient Squared (CGS) algorithm was described by Sonneveld
[20]. It is applicable to non-symmetric linear systems, but has highly irregular
convergence behavior. Barrett et al. [2] state that it tends to diverge when the initial
guess is close to the solution.

No special control parameters are used for the CGS algorithm. Hence the
constructor and destructor functions are all that are required from the user’s point of view.

CGS_Solver class public interface

class CGS_Sol ver : public IterativeSol ver

/'l constructor function
CGS _Solver(int m;

/1 destructor function
virtual ~CGS_Sol ver() {};

3.7 CG

The Conjugate Gradient (CG) algorithm, due to Hestenes and Stiefel [13], is the
oldest and most well known of the Krylov subspace methods for linear systems. Like all
of the other Krylov methods, it constructs the approximate solution vector as a linear
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combination of the orthogonal basis vectors for the Krylov subspace generated from the
initial residual. It isclosely related to the Lanczos method for symmetric matrices.

The CG adgorithm is only guaranteed to converge for linear systems with
symmetric, positive definite (SPD) matrices (though this sufficiency condition for
convergence is useful only in the theoretical setting where round-off error is absent:
hence this guarantee is of limited utility in practice, as ill-conditioned matrices may result
in extremely slow convergence rates in the absence of an effective preconditioner).
Computationally, it requires one matrix-vector product and two vector inner products per
iteration. Due to its reduced operation count, it is an excellent choice when the linear
system is SPD. No special control parameters are used for the CG algorithm. Hence the
constructor and destructor functions are all that are required from the user’s point of view.

CG_Solver class public interface

class CG Solver : public IterativeSol ver

/1 constructor function
CG_Sol ver ();

/1 destructor function
virtual ~CG Solver() {};

3.8 CGNE

Conjugate Gradients on the Normal equations to minimize the Error (CGNE) is a
simple variant of CG which allows the solution of systems with non-symmetric matrices
(see Barrett et al. [2], Kelly [15] and Nachtigal, Reddy and Trefethen [17], among others).
The idea is to apply the method of conjugate gradients to the linear sysAém="b,

and then setx= A"y to obtain the solution to the original systesx=b. The

disadvantage of this approach is that the condition numb@rbfis the square of that of
A.

CGNE may be applied to non-symmetric linear systems, and requires a transpose
matrix-vector product in addition to the work performed by ordinary CG at each iteration.
No special control parameters are used for the CGNE algorithm. Hence the constructor
and destructor functions are all that are required from the user’s point of view.

The CGNE solver requires specialized preconditioner implementations. The valid
preconditioners have prefix “CGNE_". Since the resulting system is SPD, a few
specialized preconditioners are generally sufficient. We have implemented the
polynomial and Block Jacobi preconditioning methods for use with CGNE.

CGNE_Solver class public interface

cl ass CGNE_Sol ver : public IterativeSol ver

/'l constructor function
CGNE_Sol ver ();
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/] destructor function
virtual ~CGNE_Sol ver () {};

3.9 CGNR

Conjugate Gradients on the Normal equations to minimize the Residual (CGNR) is
another variant of CG which allows the solution of systems with non-symmetric matrices
(see Barrett et a. [2], Kelley [15] and Nachtigal, Reddy and Trefethen [17], among
others). It is similar in principle to CGNE, with the idea being to apply the method of
conjugate gradients to the linear system A" Ax= A'b. The resulting solution vector isin
principle identical to the solution of Ax=b. This approach is aso affected by the fact
that the condition number of AAT is the square of that of A. See Kelley [15] for an
explanation of the theoretical difference between CGNE and CGNR.

CGNR may be applied to non-symmetric linear systems, and requires a transpose
matrix-vector product in addition to the work performed by ordinary CG at each iteration.
No special control parameters are used for the CGNR algorithm. Hence the constructor
and destructor functions are all that are required from the user’s point of view.

Like CGNE, the CGNR solver requires specialized preconditioner implementations.
The valid preconditioners have prefix “CGNR_". Since the resulting system is SPD, a
few specialized preconditioners are generally sufficient. We have implemented the
polynomial preconditioning method for use with CGNR.

CGNR_Solver class public interface

class CONR_Sol ver : public IterativeSol ver

/1 constructor function
CANR_Sol ver () ;

/1 destructor function
virtual ~CGNR _Solver() {};

4 Preconditioner Implementations

The current implementation of ISIS++ includes a collection of preconditioner
implementations, all derived from either tReeconditioner or RowPrecontioner base
class. The basic preconditioning model used in ISIS++ is described in section 2.3. For
brevity, we have omitted the interface components common to the base class in the
implementation specifications that follow. Detailed descriptions of the preconditioner
base classes can be found in section 2.3.

A number of unsupported preconditioners based on other packages (SuperLU,
SPARSKIT2, BPKIT, HYPRE, and AMG) are optional in ISIS++. If the user has access
to a package, the corresponding preconditioners can be enabled from the configure script
used when installing ISIS++. We now present the public interfaces for the
preconditioners currently supported in ISIS++.
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4.1 Identity

The identity preconditioner is provided in ISIS++ to establish a base line for
unconditioned systems. The identity preconditioner is essentialy a non-operation,
whereby the solution vector from the preconditioner “solve” functions simply returns the
passed vector. There are no special parameters associated with the identity
preconditioner, so the public interface simply provides constructor and destructor
functions, as follows.

Identity PC class public interface

class ldentity PC : public Preconditioner

/1 constructor function
Identity_PC(const Matrix& A);
/] destructor function
virtual ~ldentity PC() {};

4.2 Diagonal scaling

Diagonal scaling can be viewed as the simplest of the incomplete factorization
schemes applied to the matrix to form an approximation té\™. The diagonal scaling
(Point Jacobi) preconditioner takes the form given by:

_ga ifi=jp
m. = e
[0 ifi #j 0
where a; = (i, ]) element of the matrixA, and m; = (i, j) element of the (diagonal)
preconditioning matrixM . Since multiplication on the left by a diagonal matrix merely
scales the corresponding rows of the coefficient matrix, the preconditioned coefficient
matrix A takes the simple form:
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There are many practical advantages to th&gonal scaling scheme, and this
simple method works remarkably well on many problems. Among its chief useful
characteristics are that it is very simple and hence readily implemented, and that it
converts all of the diagonal elements to the same sign. This latter feature is helpful when
dealing with matrices that have elements of both signs on the diagonal, such as those
arising from mixed finite-element analyses involving required implementations of
constraint relations (at least, those mixed analyses not characterized by zero diagonal
matrix elements, in accordance with the caveats given below). In addition, if the matrix
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Is sparse and stored in arow-oriented format, then this approach is easy to implement and
fast to compute, as the diagonal scaling is applied row-wise.

Unfortunately, there is a practical problem that commonly occurs with Point Jacobi
schemes, in that a zero on the diagonal causes numerical difficulties that add complexity
to this otherwise simple preconditioning scheme. This pathological case is representative
of a genera problem where relying only on the diagonal entry for scaling information
provides insufficient information to construct a good preconditioner. We have currently
implemented a heuristic in 1SIS++ that sets a zero diagonal to one for the purposes of the
diagonal Jacobi preconditioner.

The row scaling operation is closely related to the diagonal preconditioner, whereby
the maximum absolute value on each row is used instead of the element on the diagonal. .
Thereisa CGNE variant of this preconditioner in 1SIS++.

Diagonal_PC class public interface

class Diagonal PC : public Preconditioner

/1 constructor function

Di agonal _PC(const Matrix& A);
/] destructor function
virtual ~Diagonal _PC() {};

4.3 Block Jacobi

Block Jacobi preconditioning is a generaization of the Point Jacobi or diagonal
scaling scheme. Block Jacobi creates a block diagonal preconditioning matrix, whose
blocks correspond to the coefficient matrix A. Inverting these blocks gives M., where
the right-preconditioning matrix M, =1. The implementation in ISIS++ currently
supports two blocking strategies, namely, allowing the blocks to overlap or not. Interface
functions are supplied to allow the user to set and query the block size as well as the
blocking strategy.

Non-overlapping or overlapping blocking is controlled by setting strategy equal to 1
or 2, respectively, with the bl ockSt r at egy set function. There is a CGNE variant of
this preconditioner in 1SIS++.

BlockJacobi_PC class public interface

cl ass Bl ockJacobi _PC : public RowPreconditioner

/1 constructor function
Bl ockJacobi _PC(const RowlMatri x& A);

/] destructor function
virtual ~Bl ockJacobi PC() {};

/1 control/access functions
i nt bl ockSize(); /1 get block size
voi d bl ockSi ze(int size); /'l set block size
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int blockStrategy(); /1 get bl ocking strategy
voi d bl ockStrategy(int strategy); // set blocking strategy

4.4 Block LU

The Block LU preconditioner uses the SuperL U factorization package of Demmel et
a. [5],[6] to invert exactly the diagonal blocks of a block-wise distributed matrix. In the
case where a single processor is being used, this preconditioner is in fact a direct solver.
Naturally its performance (in terms of convergence) on a given problem deteriorates
rapidly as the number of processors is increased, since there is a corresponding decrease
in the size of the diagona blocks that are being inverted and used to approximate the
matrix inverse. Obvioudly the diagonal blocks must be non-singular (this is not always
the casein practice).

Memory overheads are severe for this preconditioner. Since it performs a full exact
factorization, thereis alot of fill-in for the factors L and U that are produced and stored
internally. A set of ILU preconditioners have been added to I SIS++, but are not officially
supported at time of thiswriting.

Currently, the Block LU preconditioner only works with the BDCRS (see
description in the implementation section) matrix class.

BLU_PC class public interface

class BLU PC : public Preconditioner

/1 constructor function
BLU_PC(const BDCRS _Matrix& A);
/] destructor function
virtual ~BLU PC() {};

4.5 Polynomial

In general, a polynomial preconditioner approximates the inverse of the matrix A by
constructing a matrix Ml'l = P,(A), apolynomial in A. The polynomial preconditioner
currently implemented in 1SIS++ provides two choices for the type of the polynomial:

Neumann and Least Squares. The polynomial type and order can be set and queried by
the user through public interface functions.

ISIS++ currently supports polynomia orders up to 10. Polynomia type is
controlled by setting type to 1 or 2 for Neumann or least squares, respectively, with the
pol yType set function. Variants of this preconditioner are included for use with CGNR
and CGNE solvers.

Poly_PC class public interface

class Poly_PC : public Preconditioner
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/1 constructor function
Poly_PC(const Matrix& A, Vector& sanple);

/1 conposed preconditioning constructor function
Poly _PC(const Matrix& A, Vector& sanple, Preconditioner& PCl);

/1 destructor function
virtual ~Poly_PC() {};

/1 control/access functions

int polyGOrder(); /'l get the polynonial order

voi d pol yOrder(int order); /1 set the polynomni al order

int polyType(); /1 get the polynom al type

voi d pol yType(int type); /1 set the polynom al type

virtual bool isMatrixFree(); [/ TRUE if preconditioner is matrix free
4.6 SPAI

The SPAl (SParse Approximate Inverse) preconditioner is an incomplete
factorization method which explicitly calculates and stores the approximate inverse
matrix. It uses an algorithm that is due to Grote and Huckle [12] and was implemented
by Barnard (see Barnard and Clay [1]). It has a lengthy calculation phase, but it is fully
parallel and produces dramatic improvements in convergence for most problems. Unlike
the Block LU scheme, it doesn't restrict its attention to the diagonal blocks of the matrix.
Thus, the convergence performance does not degrade when using many processors.

SPAI has several control parameters which are set and queried by interface
functions. Its public interface is given below.

SPAI_PC class public interface

class SPAI _PC : public RowPreconditioner

/1 constructor function
SPAI _PC(const RowMatrix& A);

/] destructor function
virtual ~SPAl _PC() {};

//functions for setting/querying paraneters

doubl e spai _epsilon() const; /1 get epsilon

voi d spai _epsil on(doubl e epsilon); Il set epsilon

int spai_nbsteps() const; /'l get nunber of steps
voi d spai _nbsteps(int nbsteps); /'l set nunber of steps
int spai _maxapi () const; /'l get maxapi

voi d spai _nmaxapi (i nt maxapi); /1 set naxapi

int spai _maxnew() const; /] get maxnew

voi d spai _maxnew(i nt maxnew); /] set maxnew

int spai _max() const; /1 get max

voi d spai _max(int nmax); /1 set nmax

int spai_cache_size() const; /'l get cache size

voi d spai _cache_size(int cache_size); /1 set cache size
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int spai_info() const; /'l get info
voi d spai _info(int info); /Il set info

Notes on SPAI_PC parameter control functions:

 The term epsilon is a convergence tolerance relating to the Froebenius norm,
influencing the accuracy of the approximate inverse in a trade-off with memory
requirements and calculation speed. A smaller value of epsilon implies a more
accurate approximate inverse.

» Theterm nbsteps is the maximum number of “improvement” steps per column.

e The termmaxapi is the maximum number of non-zeros in a row or column of the
preconditioning matrix M.

* The termmaxnew is the maximum number of new entries per “improvement” step.
* The termmax is the maximum dimension of the QR subproblems.

» The termcache_sizeis used to control local row caching. The values have the
following mapping:
0- 101
1-503
2 - 2503
3- 12503
4 - 62501.
Values of 3 or 4 are recommended as a starting point, although the optimal values are
problem dependent.

* The terminfo is used to control output specific to the SPAI algorithm. Seittifagto
0 will disable SPAI output, while setting it to 1 will enable output.

5 Matrix/Vector Implementations

ISIS++ was designed for scalable, distributed-memory computations. However,
some people are also interested in running in serial mode, particularly on platforms which
do not support the MPI message-passing library. In response to this need, we have
implemented mirror image serial versions of the statically and dynamically sized native
ISIS++ matrix classes.

The static-size implementations are generally faster, since they have more latitude
as regards the underlying data structures, and hence can be more fully optimized for
performance. The resizable matrix classes are based on storing and processing one row at
a time, where each row’s data is stored in contiguous memory. Rows are however, not
necessarily contiguous with each other, and hence the resizable matrix is effectively a
collection of rows, each of which may be resized.

What follows is a description of the matrix/vector implementations currently in
ISIS++. Most matrix implementations are variations on the standard CRS (Compressed



37

Row Storage) sparse matrix format, delineated by serial/distributed-memory data and
static/dynamic sizing properties, blocked data distribution, etc. An exception to this is

the Aztec [14] DM SR matrix/vector class. For each matrix class we give an annotated
header showing the functions provided by that class. In general though, we omit the
interface components common to the base matrix class from which the class is derived.

The “native” vector implementations (Seq_Vector and Dist_Vector) can be used with
multiple matrix implementations, with only the AztecDMSR matrix class requiring its
own vector class.

5.1 Sequential vector classes

The native sequential vector class implementation Seq_Vector is a direct
implementation of the Vector base class (see section 2.6), with an added copy
constructor. The default is to use the Fortran BLAS routines for the internal
computations. An alternate version which doesn't rely on this library is also available.

Similarly, the Seq_IntVector class is a direct implementation of the IntVector class,
specialized for a serial computing model and with a copy constructor. Both of the serial
vector classes are designed to inter-operate efficiently with the native serial matrix
implementations (i.e., SCRS_Matrix and RsSCRS_Matrix classes). In both vector
classes, the copy constructor creates an exact clone of the original vector.

Seq_Vector class public interface

class Seq_Vector: public Vector

/1 default constructor function
Seq_Vect or (const Map& map) ;

/1 copy constructor function
Seq_Vector (const Seq_Vector & source);
/1 default destructor function
virtual ~Seq_Vector() {};

Seq_IntVector class public interface

class Seqg_IntVector: public IntVector

/1 default constructor function

Seq_I nt Vect or (const Map& map) ;

/'l copy constructor function

Seq_I nt Vect or (const Seq_I nt Vect or & source);
/1 default destructor function

virtual ~Seq_lntVector () {};

5.2 Sequential static-size matrix class

The SCRS_Matrix matrix class is a CRS (Barrett et al. [2]) row matrix abstraction
specialized for serial computing. That is, the underlying model for the implementation is
uni-processor, global memory. The primary advantages inherent with this specialization
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include performance and simplicity related to replacing M PI-based message passing with
a global-memory model. Further, the data is contiguous in memory to fully support the
direct pointer access functions.

Unless otherwise shown, the RowMatrix public interface is replicated within the
SCRS Matrix class. The reader is referred to section 2.5 for the complete specification
of the RowMatrix base class public interface.

As with all the native matrix implementations, the Map object is based on a virtua
global coefficient mapping numbered from 1 to n, the characteristic size of the system.
The simple Map constructor map( n) isdesigned for the serial case.

The conf i gure function must be called to allocate memory before any data can
be loaded into the matrix.

The function set RowLengt h returns false, since dynamic row resizing is not
supported for this implementation.

SCRS_Matrix class public interface

class SCRS Matrix : public Rowatri x

/'l constructor function
SCRS_Matri x(const Map& map);
/1 destructor function
virtual ~SCRS _Matrix() {};

/1 information functions

int nonZeros(); /'l return nunber of nonzeros in matrix
/1 direct pointer data access functions

bool pointerAccess() {return true;};

5.3 Sequential re-sizable matrix class

The RSSCRS _Matrix re-sizable matrix classis a CRS (Barrett et al.[2]) row matrix
abstraction specialized for serial computing. It essentially duplicates the functionality of
the static equivalent (see preceding), but fully enables the function set RowLengt h. The
direct pointer access functions are fully supported.

While the two serial matrix classes share near-identical functionality, we note that
each are completely different implementations. In particular, the SCRS Matrix
Implementation uses one contiguous block of memory for the matrix values and similarly
for the column indices. This data/memory configuration is extremely inefficient for row
resizing, to the extent that we make no attempt to support it. In order to support dynamic
row resizing, the RsSSCRS Matrix effectively treats a matrix as a collection of rows, each
of which is contiguous in memory but may be digoint from other rows. As a
consequence of this data/memory layout, each row may be resized without affecting other
rows, and hence is relatively efficient for row resizing operations. Furthermore, there is
no need to pre-configure the matrix before loading data into it. Coefficients may be
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inserted using the put Row function, and the appropriate rows will be adjusted as
necessary.

RsSCRS_Matrix class public interface

class RsSCRS Matrix : public RowMvatrix

/1 constructor function
RsSCRS_Matri x(const Map& map) ;
/1 destructor function
virtual ~RsSCRS Matrix() {};

/!l set rowlength -- fully inplenented, return value = true

virtual bool setRowLength(int Iength, int rowNunber);

/1 information functions

int nonZeros(); /] return nunber of nonzeros in matrix
/1 direct pointer data access functions

bool pointerAccess() {return true;};

5.4 Distributed-memory vector classes

The “native” distributed-memory vector class implementation Dist_Vector is a
direct implementation of the Vector base class (see section 2.6), with an added copy
constructor. As with all the distributed-memory components in ISIS++, the MPI
message-passing library is used for communications. The default is to use the Fortran
BLAS routines for the internal computations. An alternate version which doesn’t rely on
that library is also available.

Similarly, the Dist_IntVector class is a direct implementation of the IntVector class,
specialized for a distributed-memory computing model and with a copy constructor.
Both of the distributed-memory vector classes are designed to inter-operate efficiently
with the native distributed-memory matrix implementations (i.e., DCRS_Matrix and
RsDCRS_Matrix classes). In both vector classes, the copy constructor creates an exact
clone of the original vector.

Dist_Vector class public interface

class Dist_Vector: public Vector

/1 default constructor function

Di st _Vector (const Map& map);

/'l copy constructor function

Di st _Vector(const Dist_Vector& source);
/1 default destructor function

virtual ~Dist_Vector() {};

Dist_IntVector class public interface

class Dist_IntVector: public IntVector
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/1 default constructor function

Di st _|I nt Vector (const Map& map);

/1 copy constructor function

Di st _IntVector(const Dist_IntVectoré& source);
/1 default destructor function

virtual ~Dist_IntVector () {};

5.5 Distributed-memory static-size matrix class

The DCRS_Matrix matrix classis a CRS (Barrett et a. [2]) row matrix abstraction
specialized for distributed-memory computing, utilizing the MPI message-passing library
for communications. The matrix datais in contiguous memory to fully support the direct
pointer access functions.

As with all the “native” matrix implementations, the map object is based on a
virtual global equation mapping numbered from 1ntathe characteristic size of the
system. The parallel Map constructor (see section 2.4) is designed for this case. As with
the sequential static-size matrix class, memory must be pre-allocated by calling the
confi gur e function before any data may be loaded.

The functionset RowLengt h returnsfalse, since dynamic row resizing is not
supported for this implementation.

DCRS_Matrix class public interface

class DCRS Matrix : public Rowiatri x

/'l constructor function
DCRS_Matri x(const Map& map) ;
/] destructor function
virtual ~DCRS Matrix() {};

/1 direct pointer data access functions
bool pointerAccess() {return true;};

5.6 Distributed-memory re-sizable matrix class

The RsDCRS_Matrix re-sizable matrix class is a mirror image of the
RsSCRS_Matrix class, but specialized for distributed-memory computing, utilizing the
MPI message-passing library for communications. @ The RsDCRS_Matrix class
essentially duplicates the functionality of the static equivalent (see preceding), but fully
enables the functioset RowLength. The direct pointer access functions are fully
supported. Also, it is not necessary to pre-allocate memory for this matrix by calling the
confi gur e function.

While the two “native” distributed-memory matrix classes share near-identical
functionality, each are completely different implementations. In particular, the
DCRS_Matrix implementation uses one contiguous block of memory for the “local”
matrix values and similarly for the column indices. In order to support row resizing, the
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RSDCRS_Maitrix effectively treats a matrix (or sub-matrix when partitioned row-wise) as
a collection of rows, each of which is contiguous in memory but may be digoint from
other rows. As a consequence of this data/memory layout, each row may be resized
relatively efficiently without affecting other rows.

RsDCRS_Matrix class public interface

class RsDCRS Matrix : public RowMvatrix

/1 constructor function
RsDCRS_Mat ri x(const Map& map) ;
/1 destructor function

virtual ~RsDCRS Matrix() {};

/!l set rowlength -- fully inplenented, return value = true
virtual bool setRowLength(int Iength, int rowNunber);

/1 direct pointer data access functions
bool pointerAccess() {return true;};

5.7 Block DCRS matrix class

The BDCRS Matrix classis intended primarily for the multiple processor case, and
distributes the matrix data block-wise in 2 dimensions so that the global matrix consists
of p x p (where p is the number of processors) sub-matrices. Each processor owns a row
of sub-matrices. Thisimplementation is not derived from the RowMatrix base class, but
rather from the Matrix base class. While there is no provision for getting a pointer to a
row, it is possible to get a pointer to a sub-block which is itself a CRS_Matrix object.
The CRS_Maitrix class, which will be described in the next section, provides many of the
capabilities of the sequential CRS matrix classes described earlier.

The BDCRS_Maitrix class can not be pre-configured. It is loaded with data using
the put Row function, which temporarily stores the data in re-sizable sub-blocks. When
al of the data has been loaded (and the fill Conpl ete function is called), it is
transferred into static size CRS_Matrix blocks. A form of direct pointer access to the
datais available by first getting a pointer to a sub-block of the matrix, and then getting a
pointer to that block’s coefficients.

BDCRS_Matrix class public interface

class BDCRS Matrix : public Matrix

/'l constructor function
BDCRS_Mat ri x(const Map& map) ;

/] destructor function
virtual ~BDCRS Matrix();

/] initialization function
voi d put (double s);
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|l access functions
virtual void getDi agonal (Vector& di agVector);
void putRow(int row, int length, double *coef, int *collnd);

/] direct sub-block access function
CRS_Matrix* getBl ockPtr (int bl ockNunber);

5.8 CRS and RsCRS matrix classes

The CRS_Matrix and RsSCRS_Maitrix classes are essentially stripped-down versions
of the previously described SCRS and RsSCRS matrix classes. They are not part of the
Matrix/RowMatrix hierarchy, require no map at instantiation, and are purely sequential.
They were specially created for use as sub-blocks of the BDCRS format (which was
described in the previous section). Their functionality mirrors that of the SCRS and
RsSCRS matrices, with the main difference lying in the constructor functions. The other
difference, in the case of the CRS Matrix class, is that the get Poi nt er ToCoef and
get Poi nt er ToCol | ndex functions are overloaded to simply return pointers to the
beginning of the data block as well asto a particular row.

The CRS_Maitrix class aso has a specialized function copy ToCCS which copies its
contentsinto a CCS_Matrix object.

We now give annotated partial headers for these two classes, showing only those
functions which differ from the SCRS and RSSCRS matrix classes, respectively. All
other functions are identical.

CRS_Matrix class public interface

class CRS Matrix
/1 constructor function
CRS Matrix(int rows, int cols, int nnz);

/] access functions
doubl e* get Poi nt er ToCoef (i nt & nnz);
i nt* getPointerToCol I ndex(int& nnz);

/'l conversion to CCS storage
voi d copyToCCS(CCS_Matri x **B)

[linquiry functions
int rows();

int colums();

i nt nonZeros();

RsCRS_Matrix class public interface




cl ass RsCRS Matri x
/1 constructor function
RSCRS_Matrix(int rows, int cols);

/| access functions
doubl e* get Poi nt er ToCoef (i nt & nnz);
int* get Poi nterToCol | ndex(int& nnz);

[linquiry functions
int rows();

int colums();

i nt nonZeros();

5.9 CCS matrix class

The CCS (Compressed Column Storage) matrix is a column-oriented equivalent to
the CRS matrix described above. It is also intended for use as a local sub-block of a
block-wise distributed matrix. It was created for use inside the Block LU preconditioner,
since the internal algorithm in Block LU requires a column-oriented matrix. Aswith the
CRS matrix, no map isrequired at instantiation. Its functionality mirrors that of the CRS
matrix, but with operations being column-oriented.

Those functions which are different are shown in the public interface below.

CCS_Matrix class public interface

class CCS_Matrix
/'l constructor function
CCS Matrix(int rows, int cols, int nnz);

/| access functions

voi d get Col Sum( Vect or & col Sunmvector);

int col Length(int col);

int getCol (int col, int length, double *coef, int & ow nd);

int getCol (int col, int |length, double *coef);

int getCol (int col, int length, int & ow nd);

int putCol (int col, int cardinality, double *coef, int *row nd);
nt* get Poi nt er ToRow ndex(i nt & nnz);

nt* get Poi nt er ToRow ndex(i nt& | ength, int col Number);

i nt* getPointerToCol Ptr(int& nnz);

/1inquiry functions
int rows();

int colums();

int nonZeros();

/1 mn/max functions
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bool col Max() const;

doubl e col Max(int col) const;
bool col M n() const;

doubl e col M n() const;

5.10 Aztec DMSR matrix/vector and map classes

The AztecDMSR_Matrix classis simply awrapper which encapsulates the DMSR
matrix storage format from the Aztec package and alows it to function as an 1SIS++
matrix class, working with other ISIS++ components such as solvers, preconditioners,
etc. This allows the core computational kernels (matrix-vector product) to be used by an
ISIS++ Krylov solver, for instance. Details of the DM SR storage format may be found in
the Aztec documentation [14]. No Aztec source code is included in the ISIS++ code
distribution. The user is responsible for ensuring that a copy of the Aztec library is
available to be linked against. Additionaly, the Aztec header file must be available, and
needs to be slightly modified. In the filaZ' azt ec. h”, all function prototypes which
are declared askt er n ...” need to be declared astern “C*  ...".

From the user’s point of view, the AztecDMSR matrix class behaves similarly to
the DCRS class, inheriting most of the RowMatrix base class functionality. The most
significant difference is that the Aztec data decomposition doesn’t require that each
processor own contiguous blocks of rows. Instead, the mapping is defined by an arbitrary
lists of rows. Obviously, contiguous blocks of rows are still a possibility, with a linear
decomposition being supplied by default. A specialized Map class, the Aztec_Map
(described below) must be used at construction. The direct pointer access functions
(get Poi nt er ToCoef and get Poi nt er ToCol | ndex) are not supported. After the
matrix has been configured, data may be loaded usingptheCoef function.
Additionally, these matrices must be used in conjunction with a specialized Vector class,
the Aztec_Vector (also described below).

Below is a partial annotated header for the AztecDMSR class, again showing only
those functions differing from other RowMatrix subclasses.

AztecDMSR_Matrix class public interface

class AztecDVSR Matrix : public Rowvatri x
/1 constructor function

Azt ecDMSR Matri x(const Aztec_Map& map);

[/ modi fied configure function
voi d configure(int **rowCount);

//data | oad function
voi d put Coef (int row, int col, double value);
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The confi gur e function takes an “int **” as an argument instead of the IntVector
accepted by previously described implementations. The reason for this is that there is no
IntVector implementation that is compatible with the AztecDMSR data structures. In this
caserowCount is still a simple (single-dimensional) array of row lengths as before, but it
Is declared as a double pointer since it can be allocated and initialized inside other
functions.

Although the AztecDMSR storage format and data decomposition is different to
those used by other ISIS++ matrix classes, the user doesn’t see any difference, for the
most part. The primary point at which the differences affect the user are in the map
object, Aztec_Map. Below is an annotated header for the Aztec_Map class.

Aztec_Map class public interface

class Aztec_Map : public Map

/1 constructor functions
Azt ec_Map(int n, const Conml nfo& comm nfo);
Aztec_Map(int n, int **update, int N update, const Conm nfo& conmm nfo);

/'l query and data mappi ng access functions

int inUpdate(int globallndex, int& |ocallndex) const;
int **getUpdate() const;

int **getUpdateOrdering() const;

int **get OrderingUpdate() const;

int **get External () const;

int **get Externlndex() const;

int *getProcConfig() const;

const int* getN update() const;

int **getDataOrg() const;

Aztec_Map reference notes:

* There are two ways to construct the Aztec_Map. If only the overall dimemsiod
a Comminfo object are supplied, then the AZ_linear option is used internally to form
a linear (contiguous blocks of rows) decomposition. Alternatively, the user can
supply the decomposition in the form of a list of local rows or an “update set” in the
arrayupdate, and the number of local rows update.

* Thei nUpdat e function determines whether the row with global nundbebal | ndex
Is in this processor’s local update set. If itiispdat e has a return value of 1 and
that row’s local index is returned iocallndex. If row globallndex is not in the local
update sef,nUpdat e has a return value of O.

* Theget Updat e function returns a pointer to the list of global row numbers which
make up the local update set.
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* The get Updat eOr deri ng function returns a pointer to the list of local indices
which reflects how the local rows were re-ordered by the internal function
AZ transformwhenthefill Conpl et e function was called.

* The get Orderi ngUpdat e function returns a pointer to the list of local indices
which maps back from the reordered local row numbers to the original ordering: i.e.,
the inverse of the list returned by the get Updat eOr der i ng function.

» Theget Ext er nal function returns a pointer to this processor’s list of external rows,
or rows from which information is needed for local calculations.

» The get Ext er nl ndex function returns a pointer to the list which gives the local
numbering (after being reordered) of this processor’s external rows.

* Theget N updat e function returns a pointer to the integer which is the number of
rows in the local update set. This is the Aztec equivalemtiofocal Rows.

 Theget ProcConfi g andget Dat aOr g functions are primarily used internally by
Azt ecDMSR_Mari x andAzt ec_Vect or functions. They return arrays which store
information about the processor configuration and the data organization, respectively.
For detailed information, see tipe oc_confi g anddat a_or g descriptions in the
Aztec documentation [14].

As an example of how some of the Aztec_Map variables relate to each other,
consider the following declarations.

const int **update = map. get Updat e();

const int **updateOrdering = nmap. get UpdateOrdering();
const int **orderingUpdate = map. get Orderi ngUpdate();
const int **external = map.getExternal ();

const int **externlndex = nap.get Externl ndex();

Then *updat e contains a sorted list of (global) row numbers to be updated on this
processor. Beforki | | Conpl et e() has been called (i.e., before the internal matrix data
has been re-ordered), the following relation holds: if a row’s local imdexknown,
(*update)[i] gives that row's global row number. The mapping arrays
updat eOrderi ng andor deri ngUpdat e are available only aftefri | | Conpl et e()

has been called. (*updateOrdering)[i] gives the local index of global row
(*update)[i]. If only the local (reordered) indaxis known, then we can use the
relation | = (*orderingUpdate)[i] and then the global row number is
(*update)[j]. For the external rows;ext ernal contains a sorted list of this
processor’s external rows (global row numbers), @helxt er nl ndex) [i] gives the
local (reordered) index @¢fexternal )[i].

As mentioned, the AztecDMSR_Matrix class must be used with the Aztec Vector
class. This is simply because the other ISIS++ vector classes can’t be instantiated with
the Aztec_Map and must have data corresponding to a contiguous block decomposition.
In the public interface given below for the Aztec_Vector class, only the constructor is
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shown, because thisis the only way in which it differs from the other vector classes from
the user’s point of view. All other differences are internal.

Aztec_Vector class public interface

class Aztec_Vector : public Vector

/1 constructor function
Azt ec_Vector(const Aztec_Map& nap);

6 Example Problem

A simple example problem is presented in this section as a concrete example of the
process of calling the ISIS++ package from an analysis program. This problem is solved
using the algebraic interface. A finite element interface has been developed, and is
addressed in a separate document. Information on the finite element interface can be
found at URLhttp://z.sandia.gov/fei This example problem utilizes a two-dimensional
heat conduction problem to generate a set of finite-difference equations that are solved by
ISIS++. The entire process of mathematical modeling, linear equation construction, and
solution is presented in sufficient detail so that this example can serve as an intermediary
to more complicated problems to be solved using ISIS++.

This section demonstrates the entire process of “solving a problem”, starting with
the underlying mathematical statement, proceeding through the discretization process that
results in a system of linear algebraic equations, and terminating in the solution of those
simultaneous relations. Also, the example problem is sufficiently “generic” so that it can
be readily modified by the user to handle large or small equations, or a whole range of
solution response, ranging from smooth to singular.

6.1 Problem statement

The example problem represents heat conduction on a rectangular domain, which is
a class of problems that includes many other important engineering and scientific
analyses, such as steady-state diffusion, dispersion, electrical conduction, and membrane
displacement. This problem admits relatively simple discretizations (such as the finite-
difference scheme presented below), but can be easily generalized to more complex
discretization schemes.

The geometry of the problem is a rectangular plate lying in the x-y plane, as shown
in the figure below. The rectangle has dimensiona ahdb, and its natural directions
are aligned with the coordinate directions as shown. On the perimeter of the rectangle,
the temperature field vanishes, and within the interior, steady-state heat conduction
occurs with a balance of conductance of heat energy within the plate, lateral convection
from the plate’s area (in the direction perpendicular to the page), and arising from sources
within the plate.
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Ay

u = 0 on perimeter of rectangle X

Figure 3. Geometry of Sample Problem

The balance of heat energy can be made precise by introducing appropriate
definitions. First, define u(x,y) to be the temperature distribution within the rectangular
plate. Let c(xy) represent the thermal conductivity of the plate, which is taken to be a
scalar because the plate is composed of an isotropic material (in general, the thermal
conductivity is a second-rank tensor, but that complicates the sample problem in a
manner not germane to the demonstration purposes desired here). Take p(xy) to
represent the surface convection coefficient, which captures the (linearized) temperature-
dependent transfer of heat from the top and bottom of the plate. Finaly, let s(x.y)
represent the sources and sinks distributed throughout the plate, with a positive sense
representing a source of heat energy.

With these definitions, the governing boundary-value problem (BVP) for heat
conduction in the plate is given by the partial-differential equation (PDE) and boundary-
conditions (BC’s) defined by:

_ Slg( EF(X,Y)§B+ % %}(x,y)%%+ p(x,y)u(x1 y) - S(X, y)
U(O,y) = U(a,y) =0 for0O< y< b andU(X,O) = U(X,b) =0 forO< x<a

In order to simplify the example problem development, take each of the material
properties to be a constant, so that a uniform isotropic problem is modeled, in that:

c(xy) = ¢, = constantp(x,y) = p, = constants(x,y) = s, = constant
With this simplification, the BVP takes the following form, which is amenable to an
elementary finite-difference discretization:

2u  duld
o g+ S P = 5

ulOy)=u(@y)=0 forO<y<b andu(x,0)=u(xb)=0 forO<x<a
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6.2 Derivation of equation set

The governing BV P can be discretized by introducing standard difference relations
to replace the partia differentia operators, and the resulting discrete problem is readily
cast into the form of a system of linear equations. The process of constructing this set of
equations begins by constructing a grid of difference nodes, and then introducing a
standard finite-difference approximation for the Laplacian operator on each of these
nodes.

The discretization geometry is shown in the figure below.

Av N X segments a= NX*hy
in x-direction
b=NY*hy
b NY seaments
in y-direction
node (i.i)
[
X
a

MX =NX + 1 = number of nodesin x-
MY =NY + 1 = number of nodesin y-

Node (i,j) isat x = (i-1) hy , v = (i-1) hy

Figure 4. Geometry of Discretization

There are two classes of nodes present in the discretization: interior nodes, where a
difference relation for the Laplacian operator can be written, and exterior nodes, where
the problem’s boundary conditions must be satisfied. In either case, an independent
mathematical relation can be written for each node, which results ix &NNsystem of
linear relations that can be solved using solution services provided by ISIS++.

In the case of interior nodes, the Laplacian difference relation is given by:

%Zu +é'2u% _ Ui —2u U + Ui g — 205 U
2 2
d( W ode(i, j) (hx)2 (hy)2

On the exterior, the boundary condition specification is given by:

U, =Uy =0 U =Uyy; =0
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A vector storage format can be used to represent all of the nodal temperature values by
introducing a single subscript k defined by:

k=i(MY)+j+1 fori=0,1,2 ..NX; j=0,1, 2, ..NY
This culminates in the following set of linear agebraic relations:
Left Edge:

u =0  1sksMY
Right Edge:

u =0 MX*NY +1<k < MX*MY
Top Edge:

u =0 kmodMY =0
Bottom Edge:

u =0 kmodMY =1

Interior Nodes:
|:| 2h 2 |:| h 2h ZS
_uklhyz _ukzhxz U DZ(hX2 + hy2)+ L Cy & |:'_uk4hx2 _Ukshyz == Cy :
where
k=>1-D*MY+j+1
k,=i* MY + j

k,=k=i*MY +j+1
kK, =1*MY +j+2
K=(@(+D*MY +j+1

In practice, the matrix would be populated by looping over al the (i,j) nodes using a
program control structure such as the following:

for (i =0 to NX)
for (j =0 to Ny
K =i*M +j +1
case
| eft edge node
generate sinple equation for left edge
ri ght edge node
generate sinple equation for right edge
top edge node
generate sinple equation for top edge
bott om edge node
generate sinple equation for top edge
interior node
generate conplicated difference equation

The structure of the resulting system of linear equations is pictured below, for the
case of NX = NY = 10. Note that because of the simple manner in which the boundary
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conditions are implemented, the matrix is not symmetric (e.g., examine the initial rows
and columns). It is relatively straightforward to symmetrize matrices arising from self-
adjoint differential and symmetric difference relations, but since ISIS++ is capable of
solving non-symmetric systems of equations, no attempt at symmetrizing these difference
relations will be made.

R N
R
R N
R W
R N
R W
S N
R W
R

Figure 5. Sample Problem Matrix Structure

6.3 Overview of code to generate problem

The C++ code required to generate the equations derived above is outlined below.
(The complete working program is supplied with the 1SIS++ code distribution in file
“isis/drivers/FDexample.cc.”) The first block shown is the declaration of the various
geometric and material parameters, named to match (or augment, in the case of single-
letter terms, like “a”) the actual parameter names from the heat conduction problem:

/| paranmeters defining the physical and discretized problem
int nx, ny, nx, ny;

doubl e conduct, convect, source

doubl e a_length, b_length;

Next, various program variables are declared, including those required to construct the
solution, such as the column indicek_d¢ol um[]) and matrix equation terms

(mat ri x_t erns[]) required to store the various nonzero elements of a given row of the
matrix.

/1 variables to construct matrices for the discretization

int i, j, k, m n, numcols;

int k_colums[5];

doubl e x_size, y_size, sq_x_size, sq_y_size

doubl e sol _factor, rhs_factor;
double rhs_term matrix_terns[5];

The next block of code expresses the initialization of the program data, including all
geometric, material, and discretization data required to express the matrix equations in a
simple form.

/1 initialize the physical problem paraneters here
conduct = 100. 0; /'l isotropic thernal conductivity
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convect = 1.0; /1 lateral convection coefficient
source = 1.0; /1 distributed heat source term
a_l ength = 20.0; Il length of rectangle in x-direction
b length = 10.0; /1 length of rectangle in y-direction
nx = 24; /'l nx = nunber of elements in x-direction
ny = 16; /'l ny = nunber of elenments in y-direction
nK = nx + 1; /1 mx = nunber of nodes in x-direction
nmy = ny + 1; /1 my = nunber of nodes in y-direction
n = nx*ny; Il size (nunber of equations) of problem
x_size = a_l ength/ nx;
y_size = b_length/ny;
SO_x_si ze = x_size*x_size
sq_y_sSize = y_5|ze*y_size
sol _factor 2.0*(sq_x_size + sq_y_size) +
SQ_X_Si ze*sq_y_si ze*convect/ conduct ;
rhs_factor = sq_x_size*sq_y_si ze*source/ conduct;

/1 now that we know the size of the problem we can
/1 initialize the sparse matrix structures appropriately
Map map(n);

/'l construct vector for configuring the matrix structure.
Seq_I nt Vect or nmyRowCount ( map) ;

get the row lengths to establish matrix structure.
determi ne the number of nonzero terms in each row (k)
of the matrix by stepping over the entire finite-
difference grid (i,j)
r (i =0; i <=nx; i++) {
for (j =0, ] <= ny; j++) {
k =i*ny + | + 1;

/1
I
/1
I
fo

check for interior (differenced) vs. exterior (boundary) nodes
(these cases are treated separately in case we wish to
general i ze the boundary conditions)

((1 <= k) && (k <= ny)) Il left edge

numcols = 1;

el se if ((nmy*nx+1<=k) && (k<=nx*ny)) /'l right edge

numcols = 1;

else if ((k @bny) == 0) /1 top edge
numcols =

else if ((k @bny) == 1) /1 bottom edge
numcols =

el se /1 interior node (differenced)

numcols =5
myRowCount [ K] = num_col s;

}

/] construct solution and RHS vectors.
Seq_Vector x(nmap), b(map);

/1 construct an "enpty" matrix, then set its structure
RsSCRS_Matri x A(map);
A. confi gur e( nyRowCount) ;

The following code generates the matrix on a row-by-row basis, using the same
mathematical relations presented earlier.

for (i =0; i <=nx; i++) {
for (j =05 j <=ny; j++) {
k =i*ny + | + 1;

Il check for interior (differenced) vs. exterior (boundary) nodes
/'l (these cases are treated separately to sinplify generalization
/1l to nore conplicated boundary conditions



if ((1 <= k) &&(k <=ny)) { Il left edge
numcols =
k_col urms[O] = k;
matri x_terns[0] = 1.0;
rhs_term= 0.0;

}

else if ((nmy*nx+1<=k) && (k<=mx*ny)) { // right edge
numcols = 1;
k_col ums[ 0] = k;
matri x_terns[0] = 1.0;
rhs_term= 0.0;

}

else if ((k %rry) == 0) { /1 top edge
numcols = 1;
k_colums[0] = k;
matri x_terns[0] = 1.0;
rhs_term= 0.0;

}
else if ((k %rry) = 1) { /1 bottom edge
numcols = 1;
k_colums[0] = k;
matri x_terns[0] = 1.0;
rhs_term= 0.0;

el se { /1 interior node (differenced)
numcols = 5;
k_colums[O0] = (i-1)*ny + ] + 1;
k_colums[1l] =i*ny + j;
k_colums[2] =i*nmy + ] + 1;
k_colums[3] =i*ny + | + 2;
k_colums[4] = (i+1)*ny + ] + 1;
matri x_ternms[ 0] = -sq_y_size;
matri x_terns[1l] = -sq_x_size;
matri x_terms[2] = sol _factor;
matri x_terns[3] = -sq_x_size;
matrix_terms[4] = -sq_y_size;

rhs_term= rhs_factor;

}

doubl e *coeffs = A. getPoi nterToCoef (numcols, k);

int *colum_indices = A getPointerToCol I ndex(num cols, k);

for (m=0; m< numcols; m+) {
colum_indices[mM = k_colums[ni;
coeffs[m = matrix_terms[n;

) %[k] = rhs_term

}
/!l indicate matrix data is |oaded and internal structures
// can be checked and finalized.

A fill Conplete();

Now the data structures are |loaded and the linear system can be solved.

code instantiates and uses a preconditioner and solver.

/] construct the preconditioner
I dentity PC preconditioner(A);

/] construct the solver.
QVR_Sol ver sol ver;

/| declare strings for passing paranmeters to the solver.

char **paranttrings;

paransStrings = new char*[2]; /1 we'll pass in 2 paraneters
paranStrings[0] = new char[32]; //set max string | ength=32
paransStrings[ 1] new char[32];

53

So the following
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/'l now set the paraneters
sprintf(paranttrings[0],"%", "maxlterati ons 10000");
sprintf(paranttrings[1],"%","tol erance 1.e-10");

/1 now pass the paraneters to the sol ver
int nunParanms = 2;
sol ver. par anet er s( hunPar ans, par anttri ngs) ;

/] construct the system of equations object.
Li near Equati ons | se(A Xx, b);

/1l set solver & preconditioner for the Ise object.
| se. set Sol ver (sol ver);
| se. set Preconditioner(preconditioner);

/1 conpute the preconditioner.
precondi tioner.cal cul ate();

/'l solve linear system Ax = b.
int solveStatus = | se.solve();

At this point, if the solve was successful, the solution vector is available in x and can be
used by the application code.

6.4 Results

The following figures apply to the problem data in the program listing above. This
set of parameters resultsin a small algebraic system (425 equations) which was solved by
ISIS++ using the Quasi-Minimum Residual (QMR) and Conjugate-Gradient-Squared
(CGS) agorithm utilizing an identity preconditioner (i.e., no preconditioning). The
convergence histories of these two solution methods are shown in the figure below.

4.00Q_
Iteration Counter
0.Q l l l |
0.|0 12.I50 25.'00 37Al50 50AIOO

-4.000_ uasi-Minium Residual (QMR)

Logl0(Residual)

-8. 000

-12.00_1_

Figure 6. Thermal Example Problem Convergence Histories

The results of this simulation are graphed in the contour plot shown below. Note
that the problem is doubly symmetric, although no attempt has been made in this example
to take advantage of this symmetry to reduce the size of the equation set. This neglect of
symmetry arises from two causes. The first reason is that the implementation of
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symmetry lines in a ssimple finite-difference model requires specification of a Neumann
(normal derivative) boundary condition along the line of symmetry, and such a
modification of a centered-difference relation is non-trivial, and beyond the desired scope
of this simple example problem. The other reason is that since ISIS++ is designed to
solve systems with millions of equations, there is no real need to utilize symmetry in this
simple example merely to reduce the already very small equation set size.

tenmperature field

nmn 0. 000E+00
max 1. 044E-01

+1. 1500E- 01

+1. 1000E- 01

+1. 0500E- 01
+1. 0000E- 01
+9. 5000E- 02
+9. 0000E- 02
+8. 5000E- 02
+8. 0000E- 02
+7. 5000E- 02
+7. 0000E- 02
+6. 5000E- 02
+6. 0000E- 02
+5. 5000E- 02
+5. 0000E- 02
+4. 5000E- 02
+4. 0000E- 02
+3. 5000E- 02
+3. 0000E- 02
+2. 5000E- 02
+2. 0000E- 02
+1. 5000E- 02
+1. 0000E- 02
+5. 0000E- 03
+0. 0000E+00
-5. 0000E- 03
- 1. 0000E- 02

Figure 7. Contour Plot of Temperature Field

7 Installation Procedures

7.1 System requirements

The primary requirement for building ISIS++ is a sound C++ compiler. In fact,
most of |SIS++ can be built and used (serially) with that alone. However, the distributed-
memory components rely on the MPlI message-passing library. Also, severa of the
algorithms use dense linear algebra methods provided by the LAPACK and BLAS
libraries.

Additionally, the automated building of the library requires a “make” facility.
There is also a “configure” script which uses the standard “sh” shell. As discussed
below, the distribution includes automated facilities for configuring and building 1SIS++
using UNIX makefiles.

7.2 Building the library

At the time of this writing, ISIS++ has been built and run on the following types of
computers:

* Cray T3D MPP (native and KAl C++ compilers)
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Cray T3E MPP (native C++ compiler)

ASCI Pacific Blue (native compilers)

ASCI Red TFLOP (Portland Group compilers)

SGI O2K (native compilers)

IBM SP2 (native compilers)

Meiko CS-2 MPP (KAl C++ compiler)

HP workstations (native and gnu compilers)

SGI workstations (native and gnu compilers)

DEC aphaworkstations running Digital Unix (native, gnu, and KAl C++ compilers)
DEC aphaworkstations running Linux (gnu compilers)

Sun Solaris workstations (native and gnu compilers)

Intel x86 processors running Linux (gnu compiler)

Intel x86 processors running Windows NT 4.0 (MS compilers).

The basic development environment and target platforms are UNIX systems, athough
building and running ISIS++ on other platforms is a relatively straightforward matter
based on our experience so long as adequate compilers are available. Naturally, the
distributed-memory components are not available without MPI.

The ingtalation scripts that are distributed with 1SIS++ are targeted at UNIX

systems. Essentially, the installation involves running a configure script followed by
“making” the code. The entire process is set up to be run from the root ISIS++ directory,
without need to modify any of the lower-level make files. The installation process is also
documented on the web site and in the INSTALL file included in the distribution. We
now present the basic installation procedure.

1.

To perform the standard UNIX installation process, carry out the following steps:

From the root ISIS++ directory, type the command "configure".

This will ask you a couple of questions such as whether to build for serial or parallel
execution, and (if it can’t find them) the paths to your system's MPI directory and to
your data files (for when you run the test programs in the drivers directory). Note that
the script first searches the typical paths for auxiliary libraries (MPI, LAPACK,

BLAS) and will only prompt for information if it cannot find the libraries. The default
answers obtained by hitting “Enter” or “Return” at all the prompts are usually
adequate.

Type the command: "make".
If all went well, you now have the ISIS++ library, located in:

$ISIS_ROOT/lib/$ISIS_ARCH/libisis_mpi.a (parallel case)
or $ISIS_ROOT/ib/$ISIS_ARCH/libisis_ser.a (serial case)

where $ISIS_ROOT is the path to the top-level ISIS++ directory and $ISIS_ARCH
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represents your computer’s architecture. If it takes more than one attempt to make the
library (e.g., because one or more of your path variables was wrong), type the
command "make clean” before trying “make” again, to make sure that all of the
objects get made correctly.

3. Type the command: “make test”.

This will solve the example of section 6. If libisis_mpi.a was compiled this will also
solve a test matrix (extrude_1590) using QMR on first one and then two processors.
You can compare the results to those found for extrude_1590 in the file
$ISIS_ROOT/drivers/verify. The problem should converge in 600-700 iterations.

4. |If there is still difficulty with the build after several attempts at using the configure
script, the file $ISIS_ROOT/make.options can be edited directly. make.options is
generated by the configure script. Here the compiler, linker, and library options can
be manually customized. The authors would like to know of any changes necessary to
make.options when ISIS++ is ported to a new platform.

5. Type the command: “make install”.

This will install the libraries and headers in /usr/local/isis++. You may need root
privileges to complete this step. If you specified a different installation path to
configure, the libraries and headers will go there instead.

6. To compile against ISIS++ headers, the flag required is —I/usr/local/isis++, and the
include statement is
#i nclude <isis-nmpi.h>// if you have MI
or
#include <isis-ser.h> // if you don’t have MPI.

To link against the library, give the full path to the ISIS++ library, e.g.,
lusr/local/isis++/lib/LINUX/libisis-mpi.a

where you substitute the name of your architecture for LINUX.

8 Overall Schema

The class hierarchy used to implement 1SIS++ follows a patter of single inheritance, as
shown below.

class Map
class Aztec_Map : public Map

class IntVector
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cl ass Seq_I nt Vect or
class Dist_IntVector

cl ass Vector

cl ass Aztec_Vector
cl ass Seq_Vector
class Dist_Vector

class Matrix

cl ass
cl ass

cl ass Linear

BDCRS Matrix :
Rowvatri x :

public IntVector
public IntVector

public Vector
public Vector
public Vector

public Matrix
public Matrix

cl ass Azt ecDVSR _Matri x :
cl ass AztecDVBR _Matri x :

class CRS2_Matr
class DCRS Matr

ix :
ix :

class RsDCRS Matrix :
class RsRDCRS Matrix :
class RSSCRS Matrix :

cl ass Preconditioner

cl ass
cl ass
cl ass
cl ass
cl ass

cl ass Sol ver

class lterativeSol ver

class SCRS Matrix :

Equati ons

Conposed_PC : public
Di agonal _PC : public
Identity_PC : public
Poly_PC : public
RowPr econdi tioner : public

cl ass Bl ockJacobi _PC :

cl ass CGNE_BI ockJacobi _PC :

cl ass CGNE_Di agonal _PC :
cl ass CGNE_Poly_PC :
class CGNR_Poly_PC :
class SAILS_PC :

cl ass SPAlI _PC :

public

cl ass Bi CGSt ab_Sol ver
cl ass CGNE_Sol ver

cl ass CGNR _Sol ver

cl ass CGS_Sol ver

class CG Sol ver

cl ass Def GVRES Sol ver
cl ass FGVRES_Sol ver
cl ass GVRES_Sol ver
class QVR2_Sol ver

cl ass QVR _Sol ver

class CCS_Matrix
class CRS_Matri x

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

OO0 0000 O0O0

Rowvat ri
Rowvat ri
Rowivat ri
Rowvat ri
Rowvat ri
Rowvat ri
RowMat r i
Rowat r i

X X X X X X X X

Precondi ti oner
Precondi ti oner
Precondi ti oner
Precondi ti oner
Precondi ti oner

Sol ver
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

O 000000000

publ i
publ i
publ i
publ i
publ i
publ i
publ i

Iterati
Iterati
Iterati
Iterati
Iterati
Iterati
Iterati
Iterati
Iterati
Iterati

C

O O 0O 0 o0 0

RowPr econdi ti
RowPr econdi ti
RowPr econdi ti
RowPr econdi ti
RowPr econdi ti
RowPr econdi ti
RowPr econdi ti

veSol ver
veSol ver
veSol ver
veSol ver
veSol ver
veSol ver
veSol ver
veSol ver
veSol ver
veSol ver

oner
oner
oner
oner
oner
oner
oner
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cl ass DenseMatri x
class RSCRS_Matri x

class IntArray
cl ass DenseVect or
cl ass d obal | DArray

cl ass Comm nfo

cl ass MVComm

cl ass MVConmuni cat or

cl ass Local ConmDat a

cl ass hash_t abl es

tenpl at e<cl ass T> class SmartArray /'l to disappear soon

9 Changes from ISIS++ v1.0

The changes from version 1.0 are small, involving two new preconditioners and new
member functions in several classes. The preconditioners are Composed PC and
SAILS PC. The changesto class member functions are as follows:

Map
constructor for rectangular matrices.
initComplete/isinitComplete, to support matrix assembly protocols.
numGlobal Rows, numGlobal Cols replace function n(), which is deprecated.
global StartRow, global EndRow, global StartCol, global EndCol.

Matrix
put(s) to fill the nonzeros of a matrix with value s.

Vector
random, to generate uniform reals between 0 and 1.
norml, to compute the one-norm of a vector.

Poly PC
isMatrixFree, to return boolean value of matrix usage.

SCRS_Maitrix, RSSCRS_Matrix
nonZeros, to return the entry count of the sparse matrix.
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